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Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder caused 

by dysfunction of the cystic fibrosis transmembrane conduc-

tance regulator (CFTR), an ion channel that functions to trans-

port chloride and thiocyanate ions across epithelial cell mem-

branes. Accordingly, CF is a multi-organ disease. However, the 

majority of the associated morbidity and mortality is attributed 

to pulmonary symptoms. In the airways, loss of CFTR function 

leads to thickened mucus and impaired ciliary clearance cre-

ating an environment favouring bacterial growth. CF is thus 

characterised by recurrent pulmonary infections and chronic 

inflammation leading to progressive lung destruction and, in 

many cases, ultimately respiratory failure (Elborn J S, 2016).

Culture-independent approaches based on next generation 

sequencing methodologies have revealed that the airway micro-

biome is complex and constantly changing. Microbial diversity 

has been shown to be increased in young patients, and often 

progressively decreases with age (de Koff et al. 2016). In 

young patients with CF, obtaining samples representative of the 

lower airways is challenging as they often do not expectorate 

sputum. Consequently, the lower airway microbiome of young 

patients with CF is insufficiently characterised (Hoppe and 

Zemanick 2017). The purpose of this study was to investigate 

the dynamics of the lower airway microbiota during a period 

of six months in children with CF, using samples obtained by 

laryngeal suction. The study was done in collaboration with the 

Department of Clinical Microbiology and CF Centre at Aarhus 

University Hospital. 

In this white paper, we demonstrate the analysis of 16S rRNA 

amplicon sequencing data from complex microbial communities 

using tools from the CLC Microbial Genomics Module.

Materials and Methods

The original study included serial airway samples from 62 chil-

dren under 11 years of age. Samples were collected at monthly 

routine visits to the CF clinic during a period of six months. 

For the purposes of the analysis methodologies presented in 

this white paper, we have included only a small subset of 22 

samples from four children with CF at ages 0, 5, 6 and 10 

years. Patient characteristics are listed in Table 1. 

Patient 
No. Age

Sample 
No.

Sampling 
date

Exacerbation 
at sampling 

time

Antimicrobial 
treatment at 

sampling time

CF21 5 21-1 18.09.15 - -

21-2 17.10.15 - -

21-3 30.10.15 - -

21-4 15.12.15 - -

21-5 29.01.16 - -

21-6 26.02.16 - -

CF28 6 28-1 16.09.15 - +

28-2 21.10.15 - +

28-3 16.11.15 - -

28-4 16.12.15 - -

28-5 27.01.16 - -

CF39 0 39-1 16.09.15 - -

39-2 25.09.15 + -

39-3 28.10.15 - -

39-4 01.12.15 + -

39-5 02.02.16 + -

CF58 10 58-1 04.09.15 + -

58-2 07.10.15 - -

58-3 13.11.15 - -

58-4 15.12.15 - +

58-5 05.01.16 - -

58-6 10.02.16 - -

Table 1. Patients and sample meta-data.
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Bacterial V3-V4 16S rRNA gene sequences were amplified 

following the Illumina 16S Metagenomic Sequencing Library 

Preparation protocol (Illumina). Amplicons were sequenced on 

the Illumina MiSeq using 2x300 bp paired-end chemistry.

Bioinformatics analysis was conducted using the CLC Microbial 

Genomics Module. Figure 1 illustrates the tools and workflow 

used for data analysis. Bacterial reads were clustered against 

the SILVA reference database (v128) at 97% identity threshold 

(Quast et al. 2013).

Results

Patient specific microbiotas

Clustering reads at phylum level revealed large fluctuations in 

the microbiome composition within each patient and distinct 

differences between individual patients. The most represented 

phyla were Proteobacteria and Firmicutes (Figure 2A). Across 

all 22 samples, a total of 118 genera were detected, but ten 

most abundant genera accounted for ~90% of the total relative 

abundance; Neisseria (20%), Streptococcus (18%), Bordetella 

(13%), Haemophilus (10%), Veillonella (9%), Moraxella (7%), 

Gemella (4%), Rothia (4%), Prevotella (4%), Fusobacterium 

(2%) (Figure 2B).

Using the Bray-Curtis dissimilarity metric we found that samples 

cluster by patient (Figure 3A) and that lung microbiota profiles 

were significantly different between patients (PERMANOVA 

p=0.0001). Samples from individual patients resemble each 

other more than samples from other patients, indicating that 

the airway microbiota is personal to each CF patient. The dif-

ference between each clustered group of patient samples was 

reduced, however, when beta-diversity was estimated using the 

Weighted UniFrac metric, which also accounts for the phylo-

genetic relationship of taxa (Figure 3B). Here, the microbiota 

of patient CF39 was not statistically significantly different from 
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Figure 1. Data analysis workflow using tools from CLC Microbial Genomics Module
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that of patients CF21 (p=0.25758) and CF28 (p=0.13492) 

(PERMANOVA). The microbiotas of the remaining patients were 

significantly different from each other.

To understand which bacterial genera differentiated the micro-

biota of individual patients, we investigated the relative abun-

dance of the 15 most abundant genera across all patients. As 

seen from the Venn diagrams of the differential abundance 

(Figure 4), very few taxa set the microbiota of the individual 

patients apart. Only the relative abundance of Veillonella was 

differentially represented between CF21 and the remaining 

patients. Similarly, the only taxa significantly differentially repre-

sented between CF58 and all the other patients was Bordetella. 

Patient CF28 differentiated from CF21 and CF39 by the relative 

abundance of Moraxella, and from CF39 and CF58 by the 

relative abundance of Alloprevotella. CF39 differentiated from 

CF58 by taxa Gemella, Moraxella, and Fusobacteria, and from 

CF28 by taxa Alloprevotella, Moraxella, and Staphylococcus 

(Figure 5).

 

Figure 2. Taxonomic profile of samples. Taxa were clustered at (A) phylum level 
and (B) genus level. Figure legend modified for clarity.

Figure 3. Principal Component Analysis. Beta diversity estimated by (A) Bray-
Curtis dissimilarity and (B) Weighted UniFrac.
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Microbial community dynamics

As the microbiota was shown to fluctuate substantially within 

patients during the six-month study period (Figure 2), we sought 

to investigate the underlying causes of such perturbations in the 

microbial community. For all patients, antimicrobial treatment 

regimens administered and exacerbations of disease occurring 

during sampling were registered. Figure 5 shows the alpha 

diversity, estimated by phylogenetic diversity, of individual 

samples for each of the four patients. The alpha diversity of 

the airway microbiota was found to be lower if patients were 

receiving antimicrobial treatment. Clinical exacerbations, did 

not affect alpha diversity of microbial communities.

We calculated the beta diversity (Weighted UniFrac) of longi-

tudinal samples to evaluate the microbiota changes over time 

and in response to antimicrobial treatment and exacerbation 

of disease. Patient CF21 was clinically stabile during the study 

period with no exacerbations and no antimicrobial treatments. 

However, we see that the microbiota changes considerably 

during the six months (Figure 6A). The differential abundance 

analysis (Figure 7A) showed that the lung microbiota was 

Figure 4. Venn diagrams. Comparison of top 15 most abundant genera across all patients – (A) CF21 vs all, (B) CF28 vs all, (C) CF39 vs all, (D) CF58 vs all.

C D
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initially dominated by normal flora or oral cavity related taxa 

(Prevotella, Veillonella, Rothia, Granilucatella, Streptococcus), 

but over time the relative abundance of these taxa was 

reduced and the relative abundance of opportunistic patho-

gens Haemophilus, Moraxella, and Aggregatibacter gradually 

increased. 

The lung microbiota of patient CF28 changed dramatically 

from the first two samples, taken in September and October, 

to the remaining samples from November, December and 

January (Figure 6B). This significant alteration of the microbiota 

was most likely due to the antimicrobial treatment the patient 

was given during the first two sampling time points. During 

antimicrobial treatment, the microbial community was domi-

nated by Staphylococcus, Fusobacteria and Streptococcus, and 

the normal flora was suppressed by the dominant pathogen 

(Staphylococcus) and treatment. After treatment commenced, 

the relative abundance of normal flora Prevotella, Rohtia, 

Gemella, Neisseria, and Veillonella increased in the range of 

6603-fold to 424-fold (Figure 7B).

Figure 5. Alpha-diversity estimates (phylogenetic distance) for patient samples. (A) CF21, (B) CF28, (C) CF39, (D) CF58. Samples taken during antimicrobial treatment or 
disease exacerbation are marked.

C D
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Patient CF39 experienced three episodes of exacerbation dur-

ing the study period and the PCoA plot reveal large fluctuations 

in the microbial community (Figure 6C). Considering the first 

sample from September (16-09-2015) the base line, then the 

second sample also from September (25-09-2015) represent a 

disturbance in the microbiota. In the third sample (28-10-2015) 

the microbiota return to baseline, and in the following two sam-

ples (12-01-2016 and 02-02-2016) the microbiota is disturbed 

again. Such perturbations were also revealed by the differen-

tial abundance analysis (Figure 7C), showing that during the 

first exacerbation the levels of Prevotella, Streptococcus, and 

Moraxella were increased, during the second exacerbation the 

relative abundance of Veillonella and Prevotella increased, and 

during the final exacerbation the relative levels of Moraxella 

and Alloprevotella were increased.

The airway microbiota of CF58 fluctuates substantially during 

the six-month study period. The patient experienced a single 

episode of disease exacerbation and had one antimicrobial 

treatment during sampling. As seen from the PCoA plot (Figure 

6D) samples cluster in two groups – one cluster containing 

four samples all dominated by normal flora bacteria, the 

other cluster containing the sample taken during antimicrobial 

treatment and the sample from 07-10-2015 (first sample after 

exacerbation). The microbiota of these two samples were 

Figure 6. Principal component analysis of beta diversity estimations using Weighted UniFrac metric. (A) CF21, (B) CF28, (C) CF39, (D) CF58. Sampling dates are marked 
and samples taken during antimicrobial treatment and disease exacerbation are indicated.
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characterised by increasing levels of Bordetella, Prevotella and 

Fusobacteria, and decreasing levels of Streptococcus, Neisseria 

and Veillonella (Figure 7D). 

Conclusions

To gain better understanding of the progressive nature of CF it 

is important to investigate how the microbial community of the 

lung changes though time in relation to clinical state and antimi-

crobial treatment. In this white paper, we investigated the longi-

tudinal dynamics of the CF lung microbiota from an early point 

in CF and found that the microbial communities were highly 

individual and specific to each patient. Large fluctuations in the 

microbiota composition were observed over time – even in the 

absence of disease exacerbation and influence from antimicro-

bial treatment. As expected, we found antimicrobial treatment 

administered during sampling to have a profound effect on the 

microbiota composition. However, the microbial communities 

were able to return to pre-treatment state. Additionally, we 

found pulmonary exacerbation to be associated with alterations 

in the microbiota composition.

Using the CF airway microbiome as a model, we have dem-

onstrated the utility of CLC Microbial Genomics Module for 

studying complex microbial communities and identifying both 

common and distinct members of those communities across a 

range of microbiome samples. In addition, the underlying CLC 

Genomics Workbench software, on which the CLC Microbial 

Genomics Module extends, enabled end-to-end processing, 

analysis and insight into microbiome data collected for ongoing 

cystic fibrosis research. 

Figure 6. Principal component analysis of beta diversity estimations using Weighted UniFrac metric. (A) CF21, (B) CF28, (C) CF39, (D) CF58. Sampling dates are marked 
and samples taken during antimicrobial treatment and disease exacerbation are indicated.
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